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COMPARISON OF SOME BIASED ESTIMATION METHODS (INCLUDING

ORDINARY SUBSET REGRESSION) IN THE LINEAR MODEL

by Steven M. Sidik

Lewis Research Center

SUMMARY

Three major types of biased estimator have recently been proposed in the litera-

ture: ridge, Marquardt's generalized inverse, and shrunken. Besides these newer

biased estimators, we shall consider principal components regression and subset

regression, which are also, in effect, biased estimation methods. We present the bi-

ased and unbiased estimators of the parameters in a linear model. The presentation

centers on a duality of the xTx matrix of the least-squares normal equations.

We consider biased estimators with respect to all three major objectives of a linear

model analysis:

1. Estimation of parameters: (a) In a nearly singular system, the full parameter

vector is essentially inestimable. However, certain linear combinations of the param-

eters are estimable. (b) Biased estimators all place some kind of constraint on the

parameter space in order to achieve "better" estimators. (c) The decision to use mean

squared error as a criterion of goodness should be made independently of the existence

of multicollinearity. (d) If mean squared error is to be accepted as a criterion of good-
ness, only one estimator so far proposed has any proven optimality properties. (e) Be-

cause distributional information is lacking, no biased estimator provides interval esti-

mation capability.

2. Estimation of predictive regression function: All biased estimators discussed

offer the possibility of decreased mean squared error of the predictive regression func-

tion. This decrease cannot be assured (except for two special cases of principal com-
ponents estimators) because it is not known how to identify the members of each class of
biased estimators that provide smaller mean squared error.

3. Hypothesis testing of parameters: Only the ordinary least-squares estimators

have enough of the distributional theory available to provide subset regression techniques
in the original parameterization.

The overall conclusion is that ordinary least-squares estimation and subset regression
methods are still the preferred methods of linear model analysis in the regression situ-
ation.



INTRODUCTION

Suppose as a result of experiment or observation you have accumulated a vector

Ynx1 of an observed variable which you believe may be expressed as a function of a

matrix Xnx p of p other observed predictor variables. The standard linear model

assumes

y = Xb + e

where bpx 1 is an unknown parameter vector and where enx1 is an unobservable vector

of errors of observation. Some of the objectives of an analysis of these data are

(1) Obtain an estimate of b. You may be interested in either point or interval es-

timates.

(2) Predict values of y at some combination of the predictor variables.

(3) Test if certain of the components of b may reasonably be set to zero.

The use of multiple linear regression analysis in achieving these goals has been

intensively studied by many authors. The most admirable single summary of theory and

practice is Draper and Smith (ref. 1).

Recently, some attention has been given to two aspects of regression analysis. The

first aspect is the attempted improvement of point estimators where the criterion of

goodness is mean squared error (Stein (ref. 2), James and Stein (ref. 3), and Sclove

(ref. 4)). Sclove discusses an estimation technique which guarantees that the sum of

component-wise mean squared errors of the biased estimator is smaller than that of the

ordinary unbiased least-squares estimator. He also presents some further results

under the restrictive condition that the terms of the equation can be ordered in impor-

tance prior to analysis. These procedures can be somewhat difficult to implement and

very little is known about the distributional properties of the resulting estimators.

The second aspect of regression that has been considered recently is the problem of

point estimation when there is a high degree of multicollinearity among the predictor

variables (Hoerl and Kennard (refs. 5 and 6), Marquardt (ref. 7), Mayer and Willke

(ref. 8), Kendall (ref. 9), and Massy (ref. 10)).

Hoerl and Kennard (ref. 5) propose a class of biased estimators called ridge esti-

mators. Their criterion of goodness is mean squared error. The technique is rela-

tively easy to use, and it may be shown that the class contains estimators which have

smaller mean squared error than the least-squares estimator. However, they are

unable to provide a well-defined and unique choice of estimator from this class. Nor

have they been able to prove that their suggested procedures actually choose a member

of the class which achieves smaller mean squared error. In fact, Newhouse and Oman

(ref. 11) have reported some Monte-Carlo simulation results which indicate that ridge
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estimators do not in general perform better than least-squares estimators. There is
the further drawback that the distributional properties of ridge estimators are incom-
pletely known.

Marquardt (ref. 7) introduces a class of biased estimators called generalized in-
verse estimators. Mayer and Willke (ref. 8) discuss a number of classes of biased
estimators called shrunken estimators. These classes have the property that they con-
tain members with smaller mean squared error than the least-squares estimator. It is
not known how to choose such members, however; and there is very little known about
the distributional properties of these estimators.

Kendall (ref. 9) and Massy (ref. 10) discuss principal components regression.
Principal components regression was not introduced as a method of biased estimation,
but it will be shown to provide biased estimators. The method is very closely related to
Marquardt's. Principal components regression was introduced for use when there is
multicollinearity.

In this report we consider a method of unifying the treatment of these biased esti-
mation methods and of unbiased least-squares estimation. The presentation centers on
a duality of the xTx matrix of the normal equations for unbiased least-squares estima-
tion. The duality is in the sense that the spectral decomposition of xTx into its eigen-
space representation has the property of describing how well the data points are spread
out in the data space. A similar decomposition of (XTX)- 1 (or a generalized inverse of
xTx if it is singular) has the property of describing how the distribution of the esti-
mator of b is spread out in the parameter space. We lean heavily on these decomposi-
tions to discuss the interrelationships of all these estimation methods and to describe
the consequences of using them.

The report begins with a brief discussion of the objectives of a linear model analy-
sis. The following section presents a summary of the standard estimation methods
applied to linear models when xTx is not of full rank (i. e., exactly singular) and also
when xTx is of full rank. The section also discusses the duality of xTx in some
detail. The next section summarizes the major biased estimators and some of their
more important properties. In that section we also examine some of the relations among
the estimators. After that we consider the mean squared error of the estimated regres-
sion function for each of the biased estimators. This is followed by a discussion of
hypothesis testing procedures available for each method. The last section presents two
numerical examples to illustrate the results developed in this report.

OBJECTIVES OF LINEAR MODEL ANALYSES

The model that we are dealing with is

y = Xb + e (1)
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where

y an n X 1 vector of observations

b a p x 1 vector of unknown parameters

X an n x p matrix of known values of p predictor variables for each of n observa-

tions

e an n x 1 vector of random errors which we assume has N(O, 92I) distribution

In terms of this model we generally wish to consider any one or more of the following:

(1) Find an estimate of b. The components of b might represent either physical

constants or perhaps just empirical rates of change. We are usually concerned only

with point estimates but occasionally desire interval estimates.

(2) Predict a value of y for some point X0 (1xp) of the space of the predictor vari-

ables. This is often the most important objective.

(3) Test if certain of the components of b may reasonably be set to zero (or some

other specified constant). If the parameters represent some physical constants, such

tests may provide evidence for or against some theory. For purposes of prediction or

control, if certain components of b can be set to zero, this implies the corresponding

predictor variables have no effect on y and hence may be ignored. This provides sim-

plicity and often economy. It also often reduces the variance of the estimated predicting

equation.

Most of the previous authors have considered only one of these objectives when de-

veloping biased estimators. We will consider all three.

LINEAR MODEL ESTIMATION PROBLEM

Our model is that described by equation (1). For this model, it is well known that

either least-squares or maximum-likelihood arguments lead to the minimum-variance

unbiased estimator for b as any solution bo to the normal equations

XTXb0 = XTy (2)

In fact, xTx will be either singular or nonsingular; but in practice we may consider

XTX to be singular, nearly singular, or nonsingular. If xTx is singular, there are

many solutions bO to equation (2). The section Models Not of Full Rank describes es-

timation concepts and procedures for this situation. If xTx is nonsingular, there is

exactly one solution to equation (2). If XTX is nearly singular, then we might expect

that there will be difficulty in deciding whether we have a solution or many poorly de-
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fined solutions. A nearly singular xTx is a symptom of multicollinearity. The sec-
tion Models of (Just Barely) Full Rank describes estimation concepts and procedures
for the xTx nonsingular and nearly singular situations. The last section describes
the spectral decomposition of xTx and its interpretation.

Models Not of Full Rank

The study of linear models based upon generalized inverses for the xTx singular
situation has been most lucidly presented by Searle (refs. 12 and 13). We use his nota-
tion and an example given by Federer (ref. 14), which is discussed in chapter 5 of
Searle (ref. 13), to review the basics.

As stated previously, when X TX is singular, there is no unique solution b0 to
equation (2). We begin by letting G = (XTX)+ be a generalized inverse of xTX. That
is, G satisfies

G = (XTX)+ (3)

and

(XTX)G(XTX) = (XTX) (4)

Let

H = (XTX)+(XTX) (5)

Then

bO = (XTX)+XTy (6)

is a solution to equation (2) (not unique) such that the expectation of b 0 is

E(b 0 ) = Hb (7)

and the variance of b0 is

V(b 0 ) = G(XTX)GTU2  
(8)

Since G and hence H are not unique, there are infinitely many solutions b0 to equa-
tion (2). An estimable function of the parameter vector b is any linear function of b
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for which an estimator can be found from b0 which is invariant to whatever the choice

of G.

Searle (ref. 12) has shown that all estimable functions are of the form

wTHb

for arbitrary choice of w. There are, at most, r linearly independent estimable func-

tions where r = rank(XTX). The estimator for wTHb is given by wTGXTy, and this

is unbiased for wTHb. The variance is

V(wTGTXTy) = w TGX TXGT w 2

The example we consider is discussed in Searle (ref. 13) where weights are pre-

sented for six rubber plants, three of which are normal, two of which are off-type, and

one of which is an aberrant. The data are presented in table I. The model we consider

is

yij = A + alX 1 + a 2 X 2 + a 3 X3 + e

where

=1 if the plant is of the ith type

Xi =

0 otherwise

We thus have the model represented as in equation (1), where

Y11-l 101 1 1 0 0

Y12 105 1 1 0 0

Y3 94 1  1 1 0 0(9)

Y21 84 b = a2 X = 1 0 1 0

Y22 88 a3 1 0 1 0

Y31 32 1 0 0 1



In this example we have

6 3 2 1

(xTx) - 3 3 0 0
2 0 2 0

1 0 0 1

and it is seen that X X is singular and of rank 3. A generalized inverse of X X is

S TX)+ 0  1/3 0 o
G = (XTX) =0 0 1/2 (10)

0 0 0 1

and for this choice of G we have

H=G(XTX) = 1 1 0
0 0 1

Hence, all estimable functions are of the form

wTHb = (wl+ w 2 + w3)A + w 1 +w 2o 2 +w 3o 3  (12)

and there are, at most, three linearly independent choices of w. The unbiased esti-
mates of wTHb are given by wTGXTy = w1 . + w2 2. + w3 3.. Three reasonable
choices for independent estimable functions are provided in table II.

To emphasize, the major point under discussion is that there is no unique solution
to the normal equations. We could make it unique by imposition of a constraint such as

al + c2 + CV3 = 0. In place of such constraints, it is often more useful to concentrate on
choosing the wi values that lead to meaningful estimable functions.

Models of (Just Barely) Full Rank

When xTx is nonsingular, the estimation of b and the description of the distribu-
tion of its estimator are more straightforward. For in this case it is well known that

S= (XTX) - 1XTy
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is unique and is the minimum-variance unbiased estimator. Also bi has the following

distribution:

b- N , T2(XTX)-

From properties of the multivariate normal distribution, it is well known that a set of

linear combinations of b, say KTb, has the following distribution:

KTb - N KTb, g2KT(XTX)-1K] (13)

Now, to consider what problems arise as we slowly bridge the gap from xTx

nonsingular to singular, suppose we modify the previous example. We just barely re-

move it from the singular setting and perform a regression analysis. Suppose we per-

form an experiment to study the abrasion resistance of rubber as a function of the
th

amount of three particular additives. Let X i denote the amount in pounds of the i

additive which is loaded with an approximately 1000-pound charge to the chemical re-

actor which produces the rubber.

The proposed model is

y = Xb + e

where

1 0.99 0 G

L 1.00 0

1 1.01 0 ;

1 0 0.99 L

1 0 1.01 L

1 0 0

yT= [:1' Y2 ' Y3' Y4 ' Y5' Y6 ]

= [101, 105, 94, 84, 88, 32]

bT= [-, o 1, a 2 , a3

and e is defined as previously (following eq. (1)). In this example we have
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TX3 3.0002 0 0
2 0 2.0002 0

0 0

and it is evident that xTx is not singular. Yet, it is nearly so. Let Xi denote the

eigenvalues of xTx. When these data were submitted to NEWRAP (ref. 15), the follow-

ing eigenvalues were calculated:

,1 = 8. 41888

A2 = 2.38695

13 = 1.19444

14 = 0. 00010

Since 04 0. 0, we see XX is nearly singular.

The following parameter estimates were obtained

= 168. 002

1 = -68.0212

(14)

a 2 = -81. 9742

a 3 =- 136. 002

with a covariance matrix of (XTX)- 1 a2 where

2500.38 -2500.21 -2500.13 -2500.38
-2500.21 2500.38 2499.96 2500.21

-2500.13 2499.96 2500.38 2500.13
-2500.38 2500.21 2500.13 2501.38

It is evident that xTx is formally of rank 4 although it is essentially of rank 3 and that
the resulting (XTX) - 1 matrix indicates a large -variance in the parameter estimates.

However, let us recall the estimable functions discussed in the previous section.

Namely, let us compute
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1 - a 2 
= 13. 9530 (14)

a 2 - 3 = 54. 0278 (54) (16)

+(1&1 + 2 + 3 ) = 72. 6695 (72

The numbers in parentheses are the corresponding values from the analysis of variance

(ANOVA) situation. Allowing for the fact that X was slightly changed to provide non-

singularity, the agreement is admirable.

Although the variances of the raw estimates fi, d1, a 2 , and 6 3 are quite large,

let us consider the variances of the linear combinations of parameters in equation (16).

The linear combinations are defined by KT6, where

0 0 1"

1 0 1
3

-1 1 1
3

0 -1 1
3.

From equation (13) the covariance matrix of KT6 is given by KT(XTX)-1K 2 . But

0.82 -0.33 0.

KT(XTX)- 1K = 0.33 1.50 0.17

0. 05 -0.17 0. 53

It is thus evident that, even though the full parameter vector is quite ill determined, the

linear combinations of the parameters corresponding to the estimable functions of the

ANOVA example are well determined. This is, of course, not at all surprising.

Duality of xTx

The normal equations matrix xTx plays the central role in linear model estimation

and hypothesis testing. We first note that xTx has a spectral decomposition (ref. 16,

p. 36) or representation as
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xTx = Si ST (17)
i=l

where X1 p . X p 0 are the eigenvalues of xTx and Si are the corresponding
normalized eigenvectors of X X. If r is the rank of X X, then we have a similar
decomposition (ref. 16, p. 184) of (XTX)+ as

r

(XTX)r I S ST (18)

i=l

If r = p, then

(XTX)p (XT )-1 siS (19)

i l

An extremely important point to note is that the spectral representations of equa-
tions (17) and (18) are not invariant under linear transformations of X. Invariance may
be attained by assuming that we always consider the linear model in its correlation form.
That is, we will in the remainder of this report assume that xTx has all its diagonal
elements equal to unity. This may always be achieved by a simple linear transformation
corresponding to changes in scale and/or location of the original predictor variables.
Since the correlation matrix is always invariant with respect to changes of location and
scale, the spectral decomposition of the correlation matrix will be unique and well de-
fined. Thus, as long as we use the convention of reducing the model to correlation form,
the representation is invariant to changes in location and scale of the predictor vari-
ables.

The spectral decomposition of xTx by equation (17) indicates how and how well the
variables' space is spanned by the experiment. Namely, if Xi = 1. 0 for all i, then in
a sense the variables' space is perfectly spanned. If 1 > p, then the variables'

space is not well spanned. In fact, XOS 1 represents the linear subspace (or linear
combination) of predictor variables which is spanned the best. And XOS p represents
the linear combination of variables which is most poorly spanned. In fact, if Xp = 0,
then X0 Sp is not spanned at all. These considerations are discussed by Kendall and
Stuart (ref. 17, p. 287).

In order to illustrate the preceding, consider the following two-dimensional example.
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Suppose the data points observed are as plotted in figure 1. Assume that the dashed

line (1 is the line x1 - x2 = 0 in the variables' space and that (2 is the line

x1 + x2 = 0. Assume also that the two extreme points along 2 are equally distant

from x 1 - x2 = 0.

It is immediately seen that the observations are much more spread out along (1

(i.e., x1 - x2 = 0) than along t2 (i.e., x 1 + x 2 = 0). For such a situation we would find

that X1 > X2; and we would say that XoS1 is well spanned, while XoS2 is poorly

spanned.

Turning to consideration of the parameter space, it is well known that the least-

squares estimator 6 (under normal distribution theory) follows the normal distribution

NF(XTX)+(XTX)b, a2(XTX)+1. From reference 13 (p. 185) we have that, for a linear

combination of the estimates w b,

V(wTb) = wT(XTX)+ w u2

It can be shown (ref. 16, p. 501) that the choice of w which minimizes the variance of

wT6 is w = S1 and that this variance is

V(ST) = ST(XTX)rSl2 a

The choice of w which maximizes the variance of wTb is w = Sp and

V()Tb = a- (assuming p = r)

p

Thus, ST 6 describes the most determined linear combination of the parameters, while

S b describes the least determined. In fact, if Xp = 0, then ST b is nonestimable and -

phence not determined at all. An interpretation of this is that Sp b has infinite variance.

SOME BIASED ESTIMATORS

We now describe briefly some of the biased estimators that have been proposed and

some of their most important properties.
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Ridge Estimators

There are two forms of ridge estimator proposed by Hoerl and Kennard (ref. 5).
One is a general form and the other is a form more useful for applications.

In the general form, we begin with the model of equation (1)

y = Xb + e

We may represent xTx as xTx = PAP T, where P is the orthogonal matrix whose
columns are the normalized eigenvectors of xTx and A is the diagonal matrix of
eigenvalues. Considering the transformation to new predictor variables defined by

W =XP

and the model

y = Wa + e

we have

a = PTb

WTW = A

aTa = bTb

The general ridge estimation procedure is defined by the'family of estimators indexed
by the parameters k.i  0

1

a* = (W W + K)- WTy (20)

where the matrix K is defined by

K = (6ijki)

When all ki = 0, a* is the ordinary least-squares estimator and is unbiased. When any
k i > 0, the resulting estimator for a is biased. We define the mean squared error of
a* as

M(K) = E [(a*- a)T(a* - a)

13



It may be shown (see Hoerl and Kennard, ref. 5) that the choice of ki = 02/a2 will

minimize M(K) among the class of estimators defined by equation (20). Unfortunately,

in order to utilize this optimal choice of ki, one must know both a2 and ai . But if

this information is available, there is no estimation problem. It may also be noted that

in this canonical representation, the matrix (WTW + K) is diagonal. Thus, the estima-

tion of a reduces to the independent estimation of the components of a.

In the preceding form of ridge regression there are p k's to choose. In order to

provide a reasonably tractable method of analysis, Hoerl and Kennard consider also the

model

y = Xb + e

where it is assumed only that the X matrix is scaled such that xTx has diagonal ele-

ments equal to unity. That is, they consider the model in its correlation form. The

more specific form of ridge regression is then defined by the family of estimators

b(k) = (XTX + kI)-1 Ty k > 0 (21)

Hoerl and Kennard have shown that this family has the property that there always

exists a k > 0 such that

M(k) E[b(k) - bT[b(k) - b

= G2 + k 2bT(XTX + kI)- 2 b
(hi k)2

is minimized. It may be shown also that M'(O) < 0. There is no way yet developed for

determining the "best" k. Hoerl and Kennard's suggested procedure for choosing an

estimator from this clasp is to plot the elements of lb(k) for a number of values of k

between 0 and 1. The "best" value of k is then subjectively chosen as the point at

which these curves begin to stabilize. They have not shown that this procedure even

guarantees a reduction in M(k) let alone a minimum.

In what follows, we will be interested in the quantities S. i(k) as indicated in the

section Duality of xTx. We obtain immediately
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Si b(k) = ST (xTx + k)-IxTy

S 1 sTxT

X +k i
1

vi (22)
X. + k

1

where vi = sT XTy. We also have

ES bl)_ 1 STXTE (y)
(k)] + k

1

1 STb (23)
. +k 1
1

and

V[ST(k)] 1 STXT(g 2 I)XSi
(h i + k)2

(24)

(hi + k)

Thus, for any nonzero k, S Tb(k) is the least biased linear combination of the estimator
and STb(k) is the most biased. Also STb(k) has the least reduced variance, and sTb(k)

p p
has the most reduced variance. Thus, the best determined linear combinations of the

parameter estimates are the least modified, while the least determined are the most

modified. In effect, as k increases, those STb (k) corresponding to small X are
1 1

rapidly driven to zero. The estimators are thus constrained estimators.
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Marquardt's Generalized Inverse Estimators

Marquardt (ref. 7) discusses a method of applying generalized inverses to biased

estimation. He also considers some relations among these estimators, ridge estimators,

and nonlinear estimation. He considers the model of equation (1) where the X matrix

has been scaled so that xTx is in the correlation form. His family of estimators is

indexed by a parameter p where 0 S p - p. The family is defined by

b(p) = (X TX)+XTy (25)

The matrix (XTX)+ is defined as follows: Let p* = [p] denote the greatest integer in
P T

p and dp = p - P*'. Then (X X) is defined as

p*

(XX)= 1 S S + dp *+ * +1

xxj : h *+
j=1

=Gp (26)

As the notation is meant to indicate, (XTX)+ is closely related to a generalized in-

verse of xTx. In fact, if r = rank(XTX), then (X X)r is the Moore-Penrose geher-

alized inverse of XTX and is unique. An important point to note is that it is well known

that the Moore-Penrose generalized inverse yields the minimum-norm solution to the

normal equations (ref. 18, p. 50).

Marquardt's estimators thus provide a sort of minimum-norm solution to the normal

equations. He pursues this idea in some depth in reference 7. He also shows that there

always exists a 0 < p < p such that

M(p) = E{[(P) - b]T[@(p) - b

is minimized. It is also shown that M'(p) > 0 so that the mean squared error of b(p)

is initially decreasing as p decreases from p. As with the ridge estimators, there is

no way yet developed for determining the "best" p.

With X scaled so that xTx is in the correlation form, Marquardt labels the

diagonal elements of (XTX)+ as variance inflation factors. His suggested analytical

procedure is to consider several estimates b(p) for p between p and 0. He suggests

the rule of thumb that an acceptable value of p is one such that the maximum variance

inflation factor should usually be larger than 1. 0 but certainly not as large as 10. 0.
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Marquardt has not been able to show that this procedure even guarantees a reduction in
M(p) let alone a minimum.

For these estimators we have

0 p-i-1

dp sT XTy i- 1 < pSi (27)
S T(p) = ST(XTX)XTy = Xi

1 S X y i <p
1

It may rather easily be shown that

0 pSi-1

E=S (p)= (dp)S b i - 1 <p psi (28)

STb i<p

and

0 psi-1

(dp22 i - 1 < p i (29)

V[ST (p)] =

2
S i <p

From equations (28) and (29) we see the following behavior as p decreases from

p = p: The S Tb(p) are successively set to zero in order of increasing X. The best
determined linear combinations of the parameter estimates are the last to be set to zero,
while the least determined are the first to be set to zero.
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Shrunken Estimators

Mayer and Willke (ref. 8) discuss several families of biased estimators which may

all be labeled shrunken estimators. They consider the model of equation (1), y = Xb + e,

but do not require that xTx be in correlation form. Each family of estimators is

indexed by a parameter 1 - c 1 0 and defined by

b(c) = c(XTX)-1XTy = cb (30)

where b is the ordinary unbiased least-squares estimator. If the constant c is a

scalar fixed in advance of the analysis, then b(c) is called a deterministically shrunken

estimator. If c = f(6T6) is a scalar function of the least-squares estimator, then b(c)

is called a stochastically shrunken estimator.

It may be shown that there does exist a value of 0 < c < 1 such that

M(c) = E [b(c) - b]T[b(c) - b]}

is minimized. Consider the stochastically shrunken estimator b(c), where

c = [1- S2( T) - 11

S 2 =yTy- T(XTX)- l f1

p 3 (31)

and

0 < < 2(p - 2)(n - p + 2)

This estimator is one discussed by Sclove (ref. 4). Then if we define

W[(c)] = E{ [(c) - b]T[b(c) - bi

it was shown by Sclove (based on results of refs. 2 and 3) that

p-2

n-p+2
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minimizes W[b(c)]. This is the only biased estimator known to this author for which
a choice of biased estimator can be explicitly given that guarantees a reduction in mean
squared error.

Mayer and Willke develop another family of stochastically shrunken estimators
indexed by 5 _ 0

b(6) = 6bbT(I + 6bbT )- l

Few properties of this estimator are known. Mayer and Willke suggest the user plot the
components of 6(6) as a function of 5 and choose that 6 where the curves begin to
stabilize. It is not known whether this procedure provides an estimator with smaller
mean squared error than b.

For purposes of comparison to the other biased estimation procedures we will con-
sider only the deterministically shrunken estimator 6(c) = cb. For this choice we have

STb(c) = cST 6 sxTy (32)

1

E[S b(c)] = cST b (33)

and

V[ST(c) (34)

From equations (33) and (34) we observe that, unlike the ridge and generalized inverse
estimators, all linear combinations of the parameter estimates are driven toward zero
proportionately and that the variances are also proportionately reduced.

Principal Components Estimators

Principal components regression (or canonical regression as it is sometimes
called) does not appear to be widely used in the physical sciences although it is appar-
ently used in economics and the social sciences. The description of principal compo-
nents regression will be primarily along the lines of Kendall (ref. 9) and Massy (ref. 10)
although there may be some differences.
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We begin with the model of equation (1), y = Xb + e, and make an orthogonal trans-

formation of this model to that of

y = Wa + e

where

xTx = PAPT

pTp = ppT = I

W =XP

and

a = pTb

The vector of parameters a is then estimated by

= (WTw)- 1WTy

= A -1WTy (35)

Since A is the diagonal matrix of eigenvalues of XTX, each component of A is inde-

pendent. This is the principal reason for the transformation. Massy discusses two

methods of obtaining estimators for b from this form of the model. The first method

consists of setting to zero the components of i which correspond to "small" eigen-

values. Let i(d) denote the resulting estimate of a. (That is, the components of (d)

are equal to zero for those components with small Xi and are equal to the corresponding

components of i for those with large Xi . ) We then define the estimator for b as

b(d) = Pi(d)

It should be noted that this is precisely Marquardt's generalized inverse estimator when

p is an integer. Kendall also uses this method. We will not refer to this method as

principal components estimation.

The second method discussed by Massy is to test the components of d for signifi-

cance from zero. This may be done, for instance, by the usual t-tests. Other methods

are discussed by Kennedy and Bancroft (ref. 19) and Holms (ref. 20). In this case we
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will obtain an estimator for b which we will still denote as 6(d) and define as

b(d) = Pi(d) (36)

For either of these methods we obtain

SiX y i (d) 0

S( P(d) =Y (d)o (37)

depending upon whether the ith component of i(d) is nonzero or zero. The expecta-
tions and variances of these quantities are dependent upon the method for choosing i(d).
In particular, they will be the same as for Marquardt's estimators if Massy's first
method is used. If his second method is used, these quantities would be difficult to
obtain.

It should be noted that obtaining d(d) by the second method will usually be on good
statistical footing because the independence of the components of i permits easier
analysis than the nonindependent situations more commonly found in regression.

Discussion

There are five points we shall touch upon in this section:
(1) In point estimation, consideration should be given to the estimable functions of

the parameters.

(2) Biased point estimators all place some form of constraint upon the parameter
space.

(3) The decision to use mean squared error as a criterion for the goodness of esti-
mators should be based on the objectives of the data analysis and be made independent
of the condition of xTX.

(4) If mean squared error is to be the criterion of goodness, then Sclove's estimator
is the only one which has any proven optimality properties.

(5) Because of the lack of distributional information, no biased estimator provides
interval estimation capability.
We now consider these points in more detail.

Estimability. - As the section LINEAR MODEL ESTIMATION PROBLEM pointed
out, when the X X matrix is precisely singular there is no unique estimator for b.
Instead we should take the approach of examining estimable functions of the parameters.
The major problem in application would be that of choosing meaningful estimable func-
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tions. There seems to be no good reason for abandoning this approach as soon as XTX

becomes the least bit nonsingular. What seems most reasonable is that less and less

attention need be paid to estimability considerations as xTx deviates more and more

from singularity. The transition of viewpoint should be smooth rather than a quantum

leap.

Constraints. - Each method of biased estimation (including subset regression -

which is also, of course, a form of biased estimation) introduces constraints on the

parameter space. In the analysis of variance, the model is typically over parameter-

ized. But it is over parameterized in such a manner that certain constraints are

"natural. " In the regression situation, "natural" constraints seem unlikely to present

themselves.

The constraints imposed by biased estimators are as follows: The generalized in-

verse estimators of Marquardt and the principal components estimators of both methods

drop linear subspaces out of the parameter space. The subspaces are defined by the

constraints that S (p) = 0 or ST (d) = 0 (eqs. (27) and (37)). Which particular sub-

spaces are dropped out, of course, depends upon how it is decided to drop them. We

then choose minimum-norm solutions in the subspaces remaining. Ridge estimators

have a very closely related behavior. From the expressions for STb(k) (eq. (22)), it

may be seen that for the linear combinations corresponding to large Xi the addition of

k to the denominator has a lesser effect than for those with small Xi . Each combina-

tion, however, is driven to zero, with those with small hi getting there quicker. The

shrunken estimators are more difficult to characterize, but there are constraints none-

theless.

The final comment along these lines might be that ordinary subset regression tech-

niques also provide biased estimators and also impose constraints. The constraints are

that certain components of 6 are set to zero and as such have an extremely clear in-

terpretation.

Condition of xTx. - Following the comments about estimability and constraints, it

seems that biased estimation is not necessarily a good means of removing the symptoms

of multicollinearity. It has been belabored in references 5 to 8 that one consequence of

multicollinearity is that the estimators tend to be "too large. " Since the least-squares

estimator is unbiased, it should also possess to some degree the tendency for estimators

to be "too small. " In fact, much of the confusion can probably be attributed to misin-

terpretations of the type found on page 58 of Hoerl and Kennard (ref. 5). They state,

"However, the relationships in section 2 show that on the average, the distance from

(b) to (b) will tend to be large if there is a small eigenvalue of xTx. In particular, the

worse the conditioning of XTX, the more b can be expected to be too long. " The first

statement is not correct since unbiasedness implies the average distance is zero.
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Thus, mean squared error has been proposed as a criterion of goodness when XTX
is ill conditioned. But it is either a good criterion or a bad criterion independent of
xTX.

Sclove's estimator. - Of all the biased estimators, only Sclove's can claim a guar-
anteed improvement over the least-squares estimator. Principal components estima-
tion based on significance testing should offer possibilities for improvement. This is
only conjecture at this point. Ridge estimation, generalized inverse estimation, and
shrunken estimation do not show how to choose better estimators. Their proponents
show only that better ones exist. For Bayesian statisticians, there are comments in
references 5 and 7 which indicate these might be useful estimators. This is so because

a Bayesian statistician assumes the user is able to specify prior information about (2

and b.

Interval estimation. - Until such time as the distributional properties of the biased
estimators are discovered, they cannot be used to provide interval estimators. Only
least-squares estimation without subset regression provides the necessary distribution
theory.

MEAN SQUARED ERROR OF ESTIMATED REGRESSION FUNCTION

One of the primary objectives of a linear model analysis is to provide a predictive
equation. Since the biased estimators discussed in the previous section all show that
there exist members in their respective classes with smaller mean squared error, it
seems likely that their use could also provide predictive equations with smaller mean
squared error. It will be seen that, in fact, this can be shown to be true for most of
the biased estimators. In order to provide a common reference point, we also present
the mean squared error of the least-squares predictive equation. Since this latter pre-
dictor is unbiased, the mean squared error reduces to the variance.

Least Squares

For any estimator b* of b, we will consider the use of b* to predict the esti-
mated regression function at a set of values of the predictor variables denoted by X0
(assumed to be a 1 x p vector). We recall the model

y = Xb +.e

For an estimator 6* based on this model and data, the predicted regression function

23



at X0 is

o = Xob*

and the mean squared error of this predicted regression is denoted by

M(p I*) = E(0 - X0 b)T( 0 - X0 b)]

= E [eTX(XTX) - 1XTX XOX(XTX) - 1XTe] + 0

= ( ) + Y2 (b*) (38)

where yl(b*) corresponds to the variance and y 2 (b*) to the bias squared. For the

least-squares estimator, b* = b is unbiased and consequently YO = Xob is unbiased

for Xob. Thus,

b (XTX)- IXTy = b + (XTX)- 1XTe

and

M (0 b) = E [( 0 - X0b)T(o - Xob)]

= XO(XTX ) - 1XO 2 (39)

(see ref. 1, p. 56).

Ridge Estimators

For the ridge estimators we recall that

b(k) = (XTX + kI)- 1Ty

Thus,

Y0 = XOb(k) = XO(XTX + kI)-1XT(Xb + e)

= X0 Zb + XO(XTX + kI)-1XTe
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where Z = (X TX + kI)- X X. Thus,

Mp[b(k)] = E~0 - XOb)T(o - X 0 b)]

= E [XO(XTX + k)-1XTe + XO(Z - I)b]T[XO(XTX + k)-1XTe + XO(Z - I)b]}

= E[eTX(XTX + kI)-X XO(X T x + kI)-1XTe] + bT(Z - I)XTX 0 (Z - I)b

= Y1 [;(k)] + y 2 [b(k)]

Theorem 1: The variance function yl[(k)] is a monotonically decreasing function

of k and y'[i(0)] < 0.
Proof: Note that if we assume e ~ N(0, a2I), then 71 is the expectation of a quadratic

form in e. Thus (ref. 13, p. 55),

-l[ )= a 2 tr[X(XTX + kI)-XTXO(XTX + kMi XT]

Note that (XTX + kI)- Z 1 SST

i

and hence

which is nx 1. Thus,
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-- = tr XS S X X 0 S X12 L4 hi + k 1lO/0\L j + k

ZZ - )1 tr [(XsjsTx)(Xss TxT)]
(Xi + k)(Xj + k) 0 X SiS X

1 J

(hXi + k)(Xj + k) S -SXTxsj s
i j1

(hi + k)(X j + k) mSS jST

i j

= XoS iSi X 0

(Xi + k) 2

Note that

yl[b(O)] = 2 XO(XTX ) - 1XT

y1[b(0)] = 0

and

_2[b(k)] = - x SiS TxT < 0
S(hi 

+ k ) 3 0i

Thus, y 1 is a monotonically decreasing function of k, as was to be shown.

Theorem 2: The bias function y 2 [b(k)] satisfies Y2 [b(0)] = 0 and y[bI(O)] = 0.
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Proof: Recall y 2[(k)] = bT(Z - I)X XO(Z - I)b. Since

Z - I= (X X + kI)-lX X - I

= S Ti+k

we obtain

y 2[b(k)]= k bT STXsTx s sTb
2 (i + k ) ( j + k) 1 X X

i j

Let

fi.(k) =
(hi + k)(j. + k)

Then

k 2 (xh + Xh) + 2kXi .
fij (k) - 2

(hi + k)2(j + k)2

Thus, it is easily seen that Y2[b(0)] = 0 and y2[6(0)] = 0.
Theorem 3: MpbY0 b[(k)] is initially decreasing in k.

Proof: The result follows directly from theorems 1 and 2.

From theorem 3 we thus have the result that it is theoretically possible to reduce

the mean squared error by slightly increasing k. We have the same drawbacks as for

ridge estimators. Namely, how to specify better estimators is unknown; and they will
typically be functions of ar and b, which are assumed to be unknown.

Marquardt's Generalized Inverse Estimators

For these estimators we recall that
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b(p) = G XTy = (XTX)pXTy

and

p*

H = GpXTX S ST + dp S S+1

j=1

Then since

y = Xb + e

0 = XO(p) = XOGpX T = XOGpXT(Xb + e) = X0Hpb + XOGpX e (40)

The expected mean squared error of the predicted regression function is

M[ 0 b(P)] = E (0 - X0b)T ( - XOb)]

= E{[XoGpXe + X 0 (HP - I)b]TXGpXTe + XO(Hp- I)b]

= E(eTXGpXTXoGpXTe) + bT(Hp - I)XTXO(Hp - I)b

= vlD(P)] + Y2[b(P)]

Theorem 4: The variance function ylrb(p)] is a monotonically increasing function of

p and y'[(p)]> 0.

Proof: Since we assume e - N(0, a2I), we have that

Y1[b(p )] = 2 tr(XGpXTXOGpXT)

From equation (26) for Gp we may show

p*

XGXT 1 XSiTXT + (dp) XSp S T XT

i p*+1
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and XGpXT is an nx 1 vector. Thus,

i 0
tr[(XGpXOT(XOGpXT)] = (X0 GpXT)(XGpX4) I 7 7 x (XTX)S sTXT

i j

+() 2 XoSp* p* + XSp* 1  +
+ x T xTXS ST

p * ++1  p*+1x

Hence,

p*-~rGTTxssX (odp2  T T

l[b(p)] 2 X0SiS + XOSp*+1Sp* +1X
i p* +l

i=l

and

y1 [b(0)] = 0

This function is continuous from p = 0 to p = p, and the derivative is continuous for
nonintegral p. Between the two integers p* and p* + 1 we have

yiGl) 2a2dp ST

[(p)] XOSp,+1SP*+1X > 0
p*+ 1

Theorem 5: The bias function y 2 [b(p)] satisfies 2 [b(p)] = 0 and y[6(p)]= 0.
Proof: We have

Y2 [1(P)] = bT(Hp - I)XTX 0 (Hp - I)b (41)
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where

H -I = - SS T + (dp - 1)S ST

- I I p*+1 p* +1
j=p* +2

and the sum is null if p* + 2 > p. Thus, equation (41) may be expressed as

PT T T T P T T T

Y2[(p)] = t bSS XTX0 S Sb - (dp - 1)bT Sp*+1S*+1X0XOSiS b
2 i O Oj j

i=p*+2 j=p*+2 i=p* +2

P
-(dp - 1)bTS.STXTX oS T b

j 0 0p*+1 p*+l
j =p* +2

+ (dp - 1)2b Sp T XT T b+lSp*+l XS0 0 *+p*+1

From the preceding, it may be verified that, since dp approaches 1 linearly with

p, Y2[b(p)] = 0. Upon differentiating with respect to dp, we also may verify that

y [b(p)] = 0.
Theorem 6: The mean square error function Mp y0o b(p) is initially decreasing as

p decreases from p = p.

Proof: Immediate from theorems 4 and 5.

Theorem 6 indicates that it is possible to improve the mean squared error of the

predicted regression, at least initially, by decreasing p. However, we are unable to

specify how much to decrease p. Also, optimal values of p (if they exist) would be

expected to be functions of a 2 and b, which are assumed to be unknown.

Shrunken Estimators

For any of the shrunken estimators, we have that

b(c)=cb 60- c - 1

and hence

0 = cX 0b = cXO(XTX ) - 1XT(Xb + e)
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Thus,

Mp I (c)] = E ( - XOb)T ( - XOb)

= E (c - )X0b + cXO(XTX) - 1XTe] T c - 1)X0b + cXO(XTX)-1X Te]

= E[c2 eTX(XTX)-XTX O(XTx)-IxTe] + 2E[(c - 1)cbTXTXO(XTX)-1XTe]

+ E (c - 1)2 bTX TXOb]

For stochastically shrunken estimators, these expectations may be somewhat difficult.

For a deterministically shrunken estimator, c is a constant and M [b(c)] is easily

found to be

MplO 0 b(c)] = c2 E[eTX(XTX)-1XTxO(XTx)-XTe] + (c - 1)2 bTXTX0 b

= yl[ (c)] + y2[1(c)]

Theorem 7: The variance function yl[(c)] is a monotonically increasing function of
c > 0 and yi1[(1)] 3 0.
Proof: Since yl is simply a positive constant times c , it is immediately seen that

s1 satisfies the stated conditions.

Theorem 8: The bias function Y2 [b(c)] is a monotonically decreasing function of

c for 0 - c - 1.

Proof: Since Y2 is simply a positive constant times (c - 1)2, the result follows

immediately.

Theorem 9: Mp[ 0O b(c)] is initially decreasing as c decreases from c = 1, and

there is a unique minimum for some 0 < c < 1.

Proof: Immediate from theorems 7 and 8.

Theorem 9 states that an optimal choice of c exists. However, this optimal value

of c will be a function of a2 and b. It should be noted that the stochastically shrunken

estimator given by equation (31) (i. e., the estimator discussed by Sclove) seems to be

the most likely one for which some optimality property of the predicted regression

function will be achieved.
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Principal Components' Estimators

The principal components estimators of the second type depend upon the particular

method used for determining the significance of the coefficients. We will not consider

the mean squared error of the predicted regression function in this report. Kennedy

and Bancroft (ref. 19) and Holms (ref. 20) have considered two different procedures for

subset regression in the principal components case. Both references are concerned

with the prediction problem. There is no clear way of comparing their results to our

results since most of their results are based on Monte-Carlo simulation studies.

Discussion

From the preceding developments we can draw the conclusion that all the biased

estimators discussed offer the possibility of decreased mean squared error of the esti-

mated regression function. This possibility can be realized only in the event that we

can identify particular better members of each class. At the current state of the art,
there is no way known to do this. The two most promising possibilities seem to be

principal components and Sclove's shrunken estimator. Principal components is appeal-

ing because of some Monte-Carlo simulation work reported in references 19 and 20.

Sclove's estimator is promising in the sense that the estimator for the regression coef-

ficients can be proven to have smaller mean squared error than the least-squares esti-
mator.

HYPOTHESIS TESTING

The third major objective of a linear model analysis is to determine if some of the
parameters in the model can reasonably be set to zero. To do this, the distributional
properties of the estimators must be known in order to perform significance tests. For
the ridge, generalized inverse, and shrunken estimators, this information is not avail-
able. Thus, hypothesis testing is not possible. For the principal components esti-
mators, distributional properties of the estimators of the transformed model are better
known. However, an experimenter is more interested in hypothesis testing in terms of
the original parameterization. And it is most unlikely that a subset regression in the
transformed model will also correspond to a subset regression in the original parameter-
ization.

Ordinary least squares seems to be the only method available for subset regression
in the original parameterization. Simultaneous deletion of variables (and parameters)
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based on confidence ellipsoids (for parameters) would be a procedure with a good statis-
tical basis. The more usual subset regression procedures based on stepwise regression,
or some such, have the drawback that they involve nonindependent repeated significance
tests. Theoretical developments are difficult, but there has been much work in the area
based on simulations. To this author, the usual least-squares subset regression pro-
cedures are the most appealing.

EXAMPLES

Example 1

We use the example studied in some detail by Marquardt (ref. 7). The linear re-
gression model is

E(y) = blx1 +b 2x 2

and the estimated model is

S= b1 x1 + b2 x2

where the b* are to be estimated by several methods for comparison. The observed
data are

3/5*1/2 4/5V7

X = 4/5 1 3/5

5/547 5/51/

1

y= 2

3

The eigenvalues and associated normalized eigenvectors of xTx and (XTX)- 1 are
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xTx: =1.98 S'T (f2/2, / 2)

XT 1

= 0.02 T /2,-/2

X(XTX f = 0. 505 ST = (f/2, -/2)(X Tx)- 1
= 50.00 = 2,-/2)

It is clear from these eigenspace descriptions that xTx has the formal rank of 2 but is

essentially of rank 1. In the parameter space, the variance of the linear function

V~2(/ 1 + b2) is about I percent of the total variance, whereas V2/2(b1 - b2 ) has about

99 percent of the total variance. This is equivalent to saying that 2/2(b1 + b2 ) is well

determined, while /2/2(b1 - b2 ) is not. We drop the factors I/2 and thus consider

only b1 + b2 and b1 - b2 for simplicity.

Marquardt performed ridge regressions for various values of k, generalized in-

verse regressions for various values of p, and the two best subset regressions. Some

of the results of these analyses are presented in table III.

Table 1I(a) presents the ridge regression results for several values of k given in

the first column. The next two columns give the individual estimates of bl and 6 2 '
The following columns give the estimates for b1 + b2 and b1 - b 2 . The values of k,
bl' and 1 2 are an abbreviated set of results taken directly from Marquardt. The es-

timates f1 + b2 and 1 - 1 2 are not given by Marquardt. It may be noted that 1 - b2
is much more rapidly decreasing as k increases than is b1 + 1b2. This is in accord

with theory (eq. (22)).

Table III(b) is more interesting inasmuch as generalized inverse regression has a

more direct relation to estimable function concepts than does ridge regression. The

format of the table is identical to that of table mI(a). It is interesting to note that for

1 -5 p s 2, b1 + 2 is unchanged while b - b decreases linearly in p to the value

zero for p = 1. 0. Then for 0 : p 1, b1 - b2 remains at zero, while 13 + b2 de-

creases linearly to zero as p decreases. This is in accord with theory (eq. (27)).

Table Im(c) presents the results for the two subset regressions using x 1 only or

x 2 only. The comparison of 1 + b2 and b1 - b2 resulting from these two regres-

sions to the corresponding values from the full regression is most instructive. Note

that the eigenspace analysis indicates 61 + 62 should be well estimated and has an es-

timated value of 3. 6427 from the full regression. The corresponding values from the

subset regressions are both quite close. But the two values for 1 1 - 2 are not close

and in fact the x1 -only regression yields a value much closer to the full regression

value. Based upon this and the comparison between the two residual sums of squares

the x 1l-only subset regression is clearly superior.
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It should also be noted that Marquardt chooses the ridge estimator with k = 0. 2 as
the best ridge estimator. This yields a residual sum of squares of 0. 88-7. He also
chooses the generalized inverse estimator with p = 1 as the best of that class of esti-
mators. This yields a residual sum of squares of 0. 864. The x 1l-only subset regres-
sion, however, provides a residual sum of squares of 0. 480. The x 1l-only subset re-
gression also comes within E of not violating the stipulation that both regression
parameters are expected, because of physical considerations, to be positive.

We would consider the x 1-only subset regression to be superior to either the ridge
or generalized inverse estimators since it fits the data better and has a more readily
interpretable constraint.

Example 2

For our second example we consider the data of Gorman and Toman (ref. 21), which
were used as an illustrative example by Hoerl and Kennard (ref. 5). The data are pre-
sented in table IV in correlation form. Table V presents the eigenvalues and eigenvec-
tors of xTx. Although we used the two-digit correlations in all calculations just as
Hoerl and Kennard did, slightly different eigenvalues were obtained. Our calculations
were done by using the double-precision version of the IBM SSP EIGEN subroutine
(ref. 22) on an IBM 360/67.

Using the data matrix of table IV, we performed ridge regressions for several
values of k and generalized inverse regressions for several integral values of p.
These results are presented in tables VI and VII, respectively.

Table VI provides the following information about the ridge regression results: The
first column indicates the various values of k for which ridge regressions were calcu-
lated. For these values of k, the coefficient vectors b(k) were calculated. These are
not provided in the table. Instead, the values of Si b(k) were calculated. These values

are provided in the next 10 columns, for i = 1 to 10. The last column gives the re-
sidual sum of squares for each value of k. Upon examination of the table, it may
readily be seen that Sbi(k) decreases as k increases. The rate of decrease is most

rapid for i = 10 and least rapid for i = 1. This is in accord with the theory previously
discussed (eq. (22)). The bottom row of the table presents the estimator b(k = 0. 25)
which Hoerl and Kennard chose as their "optimum" ridge estimator.

Table VII provides the following information about the generalized inverse regres-
sions: The first column provides the values of p for which generalized inverse re-
gressions were performed. For these values of p, the coefficients bi(p) were calcu-
lated, and these are presented in the next 10 columns, for i = 1 to 10. The last column
provides the residual sum of squares for each value of p. The bottom row of the table
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provides the values of ST6(p = 10). As indicated previously, these represent what

might be called the estimable functions. The effect of changing p is to leave SiT(p)

unchanged for i - P and to set sTb6(p) = 0 for i > p. We thus need only to present

the STb(p = 10) values for comparison purposes.

Generalized inverse estimators have not previously been applied to these data in the

literature. For comparison purposes we will simply choose fb(p = 9) as the "optimal"

generalized inverse estimator since it provides very nearly the same residual sum of

squares as the "optimal" ridge estimator. This choice also provides a maximum vari-

ance inflation factor of 3. 85.

It may be noted that there is no consistent behavior of the individual components of

l(p) as p decreases from p = 10 to p = 6. That there is a consistency in l(p) as a

whole, though, is evidenced by the invariance of the ST(p) values.

When Gorman and Toman studied these data, they arrived at a best subset regres-

sion in which variables 1, 4, 9, and 10 were deleted. We will not consider here that

there might be a better subset regression (as indeed there might be). The individual

parameter estimates for the chosen subset are presented in table VIII. Also given is

the residual sum of squares for the subset regression. For purposes of comparison,

let b(d) denote the estimate of b where we have deleted variables 1, 4, 9, and 10. In

effect we have set b 1 = b4 = bg = b 10 = 0. The table also provides the values of Si b(d)

and STb for comparison purposes.

We consider three criteria to compare the three "optimal" estimators. The first

criterion is the residual sum of squares value. The second criterion is defined as

follows: Let

L(b*) ST*,. . .,S T*)

where b* is some estimator of b. Now compute the variance-weighted squared dis-

tance of each of L[(k)], L[b(p)], and L[b(d)] from L(6). That is, let

i=1

dt = rXS b(p) - S2

i=l

and
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dl XiSb(d) - SL]

i=1

The third criterion is difficult to quantify. It is the number and type of constraint placed
upon the parameter space to obtain the estimator. For instance, b places no con-
straints upon the parameter space. The estimator b(d) places certain restraints upon
the parameter space by restricting certain components of b to zero. The generalized
inverse estimators impose that certain linear combinations of b be set to zero. They
also impose the restraint that b(p) be a minimum-norm solution to the modified normal
equations. The ridge estimators impose the constraint that f(k) be the minimum-norm
estimator in a class of estimators defined by hyperellipsoids in the parameter space.

Table IX presents the three criteria descriptions for the "optimal" members of the
ridge, generalized inverse, and subset regression estimators. The comparison of
these criteria cannot be entirely objective. On the basis of residual sums of squares
and the constraints, it would seem that the subset regression is best. The residual sum
of squares is lowest, and there are four constraints which are quite easy to interpret.
The subset regression, however, has a larger d. This indicates that dropping vari-
ables 1, 4, 9, and 10 has affected the estimable functions more. One interpretation of
this larger distance is that the estimator 6(d) is farther from the center of the hyper-
ellipsoids which define confidence regions for b based on the full least-squares solu-
tion. A closer subset regression is that in which only variable 4 is dropped. This
yields a residual sum of squares of 0. 115 and a distance d of 1.04.

Considering the fact that the subset regression with variables 1, 4, 9, and 10
dropped involves four constraints as opposed to the one constraint on f(p = 9) or the
difficult-to-characterize constraint of bl(k = 0. 25), the performance of the usual subset
regression procedures seems quite good.

CONCLUSIONS

We have considered the five major types of biased estimators that have been pro-
posed in the literature. These are ridge, Marquardt's generalized inverse, shrunken,
principal components, and subset regression.

We present the biased and unbiased estimators of the parameters in a linear model.
The presentation centers on a duality of the xTx matrix of the least-squares normal
equations. The duality is in the sense that xTx in its eigenspace representation de-
scribes how and how well the data space is covered, while the similar representation of
(XTX)- 1 describes how the distribution of the estimated parameters is spread out in
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the parameter space.

We consider biased estimators with respect to all three major objectives of a linear

model analysis; that is, point estimation of the parameters, estimation of the predictive

regression function, and hypothesis testing of the parameters. Our major conclusions

with respect to these objectives are as follows:

Estimation of Parameters

1. In a nearly singular system, the full parameter vector is essentially inestimable.

However, certain linear combinations of the parameters are estimable.

2. Biased estimators all place some kinrd of constraints on the parameter space in

order to achieve "better" estimators.

3. The decision to use mean squared error as a criterion of goodness should be

made independently of the condition of xTX.

4. If mean squared error is to be accepted as a criterion of goodness, then only one

estimator so far proposed (i. e., Sclove's) has any proven optimality properties.

5. Because of the lack of distributional information, no biased estimator provides

interval estimation capability.

Estimation of Regression Function

All the biased estimators discussed offer the possibility of decreased mean squared

error of the predicted regression function. This possibility cannot be assured (except

for two special cases of principal components estimators) because it is not known how

to identify the members of each class of biased estimators that provide smaller mean

squared error.

Hypothesis Testing

Only the ordinary least-squares estimators have enough of the distributional theory

available to provide subset regression techniques in the original parameterization.
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The overall conclusion is that ordinary least-squares estimation and subset regres-
sion methods are still the preferred methods of linear model analysis in the regression
situation.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 14, 1975,
506-21.
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TABLE I. - WEIGHTS OF RUBBER PLANTS TABLE II. - THREE INDEPENDENT ESTIMABLE FUNCTIONS

Normal Off-type Aberrant w 1 w2 w3  Function Estimator

yll = 10 1  Y2 1 
= 8 4 Y3 1 32  1 -1 0 a1 - a 2  1. - Y2. = 14

Y 12 
= 1 0 5  Y2 2 

= 8 8  0 1 -1 a2 - a 3  Y2. -Y3. = 54

y13 = 94 1/3 1/3 1/3 p + 1/3(a + a 2 + a 3 ) 1/3(1. + 2 . +y 3
. ) 722

TABLE III. - RESULTS OF REGRESSIONS

FOR EXAMPLE 1

(a) Ridge regression

k 6 1  b2 + 62 61 - b2 Residual sum

of squares

0.00 5.3569 -1.7142 3.6427 7.0711 0.3636

.02 3.5709 .0354 3.6063 3.5355 .490

.04 2.9638 .6068 3.5706 2.3570 .591

.10 2.3230 1.1445 3.4675 1.1785 .741

.20 1.9757 1.3328 3.3085 .6429 .887

.40 1.6836 1.3469 3.0305 .3367 1.188

1.00 1.2795 1.1408 2.4203 .1387 2.324

(b) Generalized inverse regression

p b1  b 2  bl + b2 b 1 - b 2 Residual sum

of squares

2.0 5.3569 -1.7142 3.6427 7.0711 0.3636

1.6 3.9427 -.3000 3.6427 4.2427 .444

1.2 2.5284 1.1142 3.6426 1.4142 .684

1.0 1.8213 1.8213 3.6426 0 .864

.5 .9107 .9107 1.8214 0 4.148

(c) Best subset regression

Subset b 1  b 2  b 1 + b 2 b1 - b 2 Residual sum

of squares

x1  3.6770 0 3.6770 3.6770 0.4800

x2  0 3.5355 3.5355 -3.5355 1.5000
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TABLE IV. - DATA MATRIX FOR EXAMPLE 2 IN CORRELATION FORM

[All calculations used two-digit correlations]

XTX 1 2 3 4 5 6 7 8 9 10

1 1.0

2 -. 04 1.0

3 .51 .0 1.0

4 .12 -. 16 0 1.0

5 -. 71 .06 -. 59 -. 07 1.0

6 -.87 .09 -.65 -.09 .84 1.0

7 -. 09 .24 -. 02 .03 .38 .13 1.0

8 0 .01 .34 .08 -. 36 -. 20 -. 48 1.0

9 -. 09 .09 -. 08 .02 -. 14 .04 .07 -. 18 1.0

10 -. 36 -. 30 -. 44 -. 09 .54 .45 .40 -.46 .05 1.0

XTy -0.81 -0.10 -0.63 -0.10 0.56 0.81 0.04 0.06 0.16 0.45

TABLE V. - SPECTRAL DECOMPOSITION OF XTX

Eigen- Components of associated eigenvectors, Si, for i =

values,
1 2 3 4 5 6 7 8 9 10

3.694 0.408 -0.014 0.387 0.064 -0.473 -0.465 -0.206 0.250 -0.036 -0.365

1.533 .364 .050 .132 .034 -. 068 -. 275 .574 -. 570 .217 .254

1.294 -. 108 .806 .093 -. 361 .027 .087 .191 .063 .177 -. 345

1.054 -. 106 -. 026 -. 209 .302 -. 205 .059 -. 216 -. 026 .868 -. 079

.971 -. 027 .242 .019 .854 .155 .063 .292 .141 -. 197 -. 199

.668 -. 349 -. 228 .612 -. 057 .022 .051 .372 .440 .246 .231

.358 .178 .291 -. 414 .001 -. 228 -. 191 .100 .518 -. 017 .588

.220 -.078 -.368 -.482 -. 187 -.013 -.208 .517 .216 .031 -.482

.137 .591 -. 063 .047 -. 067 .701 .038 -. 078 .272 .252 -. 050

.070 .410 -. 107 .009 -. 044 -. 400 .0781 .193 .074 -. 039 -. 065
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TABLE VI. - RESULTS OF RIDGE REGRESSIONS FOR EXAMPLE 2

k Estimable functions, STb(k), for i = Residual sum

of squares
1 2 3 4 5 6 7 8 9 10

0 -0.375 -0.332 -0.035 0.206 -0.065 0.245 0.287 0.311 -0.300 0.877 0. 105
.02 -. 373 -. 328 -. 034 .202 -. 064 .238 .271 .285 -. 262 .683 .108
.04 -. 371 -. 324 -. 034 .198 -. 062 .231 .258 .263 -. 232 .559 .114
.06 -. 369 -. 320 -. 033 .195 -. 061 .224 .245 .244 -. 209 .473 .120
.08 -. 367 -. 316 -. 033 .191 -. 060 .218 .234 .228 -. 190 .410 .126
.10 -. 365 -. 312 -. 032 .188 -. 059 .213 .224 .213 -. 174 .362 .131
.15 -. 360 -. 302 -. 031 .180 -. 056 .200 .202 .185 -. 143 .280 .144
.20 -.356 -.294 -.030 .173 -. 054 .188 .184 .163 -. 122 .228 .154
.25* -.351 -.286 -.029 .166 -.052 .178 .169 .145 -.106 .192 .164
.30 -.347 -.278 -.028 .160 -.050 .169 .156 .131 -.094 .166 .173
.50 -.330 -.250 -.025 .139 -.043 .140 .120 .095 -.065 .108 .204

1.00 -.295 -.201 -.020 .106 -.032 .098 .076 .056 -.036 .056 .268

b(0.25)* -0.288 -0.109 -0.246 -0.054 -0.045 0.339 0.055 0.244 0.111 0.126 0.164

TABLE VII. - RESULTS OF GENERALIZED INVERSE REGRESSIONS FOR EXAMPLE 2

p Regression coefficients, bi(p), for i = Residual sum

of squares
1 2 3 4 5 6 7 8 9 10

10 -0.166 -0.223 -0.361 -0.106 -0.479 0.837 0.289 0.385 0.082 0.094 0.105
9 -.526 -.128 -.369 -.068 -. 127 .152 .120 .320 .116 .151 .159
8 -.349 -.147 -.355 -.088 .083 .164 .096 .402 .192 .136 .171
7 -.325 -.033 -.205 -.030 .087 .228 -.064 .335 .182 .286 .192
6 -.376 -.116 -.086 -.030 .152 .283 -.093 .186 .187 .118 .222

Sb(p) -0.375 -0.332 -0.035 0.206 -0.065 0.245 0.287 0.311 -0.300 0.877
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TABLE VIII. - SUBSET REGRESSION

WITH VARIABLES 1, 4, 9,

AND 10 DELETED

[Residual sum of squares, 0. 137.

i Parameter Estimable functions

estimates,

b. STb(d) STb
1 1

1 ------ -0.382 -0.375

2 -0.249 .725 -. 332

3 -. 367 .267 -. 035

4 ------ -.472 .206

5 -.546 -.135 -.065

6 1.08 -.084 .245

7 .336 .254 .287

8 .369 .771 .311

9 ------ .260 -.300

10 ------ .441 .877

TABLE IX. - OPTIMAL ESTIMATORS AND CRITERIA OF COMPARISON

Type Residual sum Distance, Constraints

of squares d

Subset (drop variables 0. 137 1.63 b 1 = b 4 = b 9 = b 1 0 = 0

1, 4, 9, and 10)

Generalized inverse, .159 .48 Minimum-norm estimator

b(p = 9) such that S10 b = 0

Ridge, b(k = 0.25) .164 .49 -----------------------

Subset (drop variable 4) .115 1.04 b 4 = 0
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Figure 1. - Two-dimensional example for duality of XTX.
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